A Theory of Sequence Indexing and Working Memory in Recurrent Neural Networks

2018 
To accommodate structured approaches of neural computation, we propose a class of recurrent neural networks for indexing and storing sequences of symbols or analog data vectors. These networks with randomized input weights and orthogonal recurrent weights implement coding principles previously described in vector symbolic architectures (VSA) and leverage properties of reservoir computing. In general, the storage in reservoir computing is lossy, and crosstalk noise limits the retrieval accuracy and information capacity. A novel theory to optimize memory performance in such networks is presented and compared with simulation experiments. The theory describes linear readout of analog data and readout with winner-take-all error correction of symbolic data as proposed in VSA models. We find that diverse VSA models from the literature have universal performance properties, which are superior to what previous analyses predicted. Further, we propose novel VSA models with the statistically optimal Wiener filter in ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    5
    Citations
    NaN
    KQI
    []