A first approach towards a fuzzy decision tree for multilabel classification

2017 
This paper proposes a multilabel fuzzy decision tree classifier named FuzzDT ML . The algorithm uses generalized fuzzy entropy, aggregated over all labels, to choose the best attribute for growing the tree. The proposed algorithm also can generate leaves predicting partial label sets, which can incorporate to some degree the dependence among labels, as well as produce more interpretable models. An empirical analysis shows that, although the algorithm does not yet incorporate pruning nor fuzzy interval adjustment phases, it is competitive with other tree based approaches for multilabel classification, with better performance in data sets having numerical features that can be fuzzified.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    4
    Citations
    NaN
    KQI
    []