Exploring the effect of Mg2+ substitution on amorphous calcium phosphate nanoparticles.

2022 
Abstract Hypothesis The study of Amorphous Calcium Phosphate (ACP) has become a hot topic due to its relevance in living organisms and as a material for biomedical applications. The preparation and characterization of Mg-substituted ACP nanoparticles (AMCP) with tunable Ca/Mg ratio is reported in the present study to address the effect of Mg2+ on their structure and stability. Experiments AMCPs particles were synthesized by precipitation of the precursors from aqueous solutions. The particles were analyzed in terms of morphology, crystallinity, and thermal stability, to get a complete overview of their physico-chemical characteristics. Computational methods were also employed to simulate the structure of ACP clusters at different levels of Mg2+ substitution. Findings Our results demonstrate that AMCP particles with tunable composition and crystallinity can be obtained. The analysis of the heat-induced crystallization of AMCP shows that particles’ stability depends on the degree of Mg2+ substitution in the cluster, as confirmed by computational analyses. The presented results shed light on the effect of Mg2+ on ACP features at different structural levels and may be useful guidelines for the preparation and design of AMCP particles with a specific Ca/Mg ratio.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    67
    References
    2
    Citations
    NaN
    KQI
    []