The effect of the length of terminal n-alkyl carboxylate chain on self-assembling and photosensitive properties of chiral lactic acid derivatives

2019 
Abstract A new series of photosensitive azo materials possessing a chiral alkyl lactate moiety and terminal n-alkyl carboxylate unit close to the azo group has been synthesized and studied. The length of the n-alkyl carboxylate chain has been systematically varied in order to establish the effect of the molecular structure on the self-assembling behaviour. Two series of materials possessing hexyl and dodecyl alkyl chains in the chiral part of the molecule have been studied. It has been shown that the length of both the alkyl chains strongly influences the mesomorphic behaviour, however, each chiral/achiral chain has different utility to tune the mesomorphic properties. With exception of the compound with the longest chains, all studied compounds exhibited the chiral tilted ferroelectric smectic C* phase. Based on the combination of terminal alkyl chains, chiral nematic, orthogonal smectic A*, and twist grain boundary smectic A* phases have been detected on cooling beyond the SmC* phase. The presence of the photosensitive functional N=N group in the molecular core allowed further tuning of the material properties by UV light illumination. The E -to- Z photoisomerization of the azo group and subsequent thermal back-isomerisation have been studied in solution by nuclear magnetic resonance and most importantly in the mesophases on bulk samples. We report on UV-induced isothermal switching from chiral smectic and nematic mesophases into the isotropic phase, respectively, and differences in the textures of mesophase upon restoration of the ordered liquid.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    13
    Citations
    NaN
    KQI
    []