交联累托石/Cu 2 O纳米复合材料的制备及可见光催化性能

2011 
CN-REC/Cu2O nanocomposites were synthesized with Cu(CH3COO)2·H2O as a copper source and cross-linked sodium rectorite (CN-REC) as a carrier and template. The obtained samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and ultraviolet visible diffuse reflectance spectrum (UV-Vis DRS). The results indicate that the regulatory effects of CN-REC on Cu2O are significant. Cu2O is dispersed in the interlayer and on the surface of the lamellar structure of CN-REC. A Si―O―Cu bond was formed between the cuprous oxide crystal and the CN-REC crystal, which established a bridge for the transfer of photogenerated charge. The energy band gap of the nanocomposites became wider and the photoresponse properties of the nanocomposites became stronger. To study the visible light photocatalytic activity of the nanocomposites, reactive brilliant red (X-3B) was selected as a target contaminant. The photocatalytic degradation rate of X-3B with the nanocomposites is more than 80%, which is better than that with Cu2O. The degradation progress accorded with the L-H kinetics equations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    0
    Citations
    NaN
    KQI
    []