Treatment of heavy metal polluted industrial wastewater by a new water treatment process: ballasted electroflocculation

2018 
Abstract This laboratory study investigated the parameters efficiency of the new technology: ballasted electro-flocculation (BEF) using aluminum (Al) electrodes to remove cadmium and zinc from industrial mining wastewater (MWW). The principle of the BEF process is based on the use of micro-sand and polymer together to increase the weight of the flocs and the rate at which they settle is radically changing the electrocoagulation-electroflocculation settling methodology. Based on the examination of the operation parameters one by one, the best removal percentage was obtained at a current intensity of 2 A, a the flow rate of 20 L/h, a micro-sand dose of 6 g/L, a polyethyleneimine (PEI) polymer dose of 100 mg, the contact times of 30 min, a stirring speed of 50 RPM, a monopolar configuration of the electrodes, and an electrodes number of 10. The results showed that the flow rate and the current density have a preponderant effect on the variability of the quality of the settled water. In comparison, filterability was found to be more sensitive to number of electrodes, micro sand dosages and current density. It was dependent on the ratio of microsand to PEI polymer dosage, and improved when this ratio increased. Response surface methodology was applied to evaluate the main effects and interactions among stirring speed, polymer dose, current intensity, and electrodes number. The removal of Cd and Zn from industrial MWW was done for very low cost of 0.1 TND/m 3 equivalent to 0.04 €/m 3 . The investigation of BEF process proposes a highly cost-effective wastewater treatment method if compared to Actiflo TM and electrocoagulation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    18
    Citations
    NaN
    KQI
    []