A novel benzimidazole-functionalized 2-D COF material: Synthesis and application as a selective solid-phase extractant for separation of uranium

2015 
Abstract A novel COF-based material (COF-COOH) containing large amounts of carboxylic groups was prepared for the first time by using a simple and effective one-step synthetic method, in which the cheap and commercially available raw materials, trimesoyl chloride and p -phenylenediamine, were used. The as-synthesized COF-COOH was modified with previously synthesized 2-(2,4-dihydroxyphenyl)-benzimidazole (HBI) by “grafting to” method, and a new solid-phase extractant (COF-HBI) with highly efficient sorption performance for uranium(VI) was consequently obtained. A series of characterizations demonstrated that COF-COOH and COF-HBI exhibited great thermostabilities and irradiation stabilities. Sorption behavior of the COF-based materials toward U(VI) was compared in simulated nuclear industrial effluent containing UO 2 2+ and 11 undesired ions, and the UO 2 2+ sorption amount of COF-HBI was 81 mg g −1 , accounting for approximately 58% of the total sorption amount, which was much higher than the sorption selectivity of COF-COOH to UO 2 2+ (39%). Batch sorption experiment results indicated that the uranium(VI) sorption on COF-HBI was a pH dependent, rapid (sorption equilibrium was reached in 30 min), endothermic and spontaneous process. In the most favorable conditions, the equilibrium sorption capacity of the adsorbent for uranium could reach 211 mg g −1 .
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    92
    Citations
    NaN
    KQI
    []