Metabolic signatures altered by in vitro temperature stress in Ajuga bracteosa Wall. ex. Benth.

2017 
To elucidate how biosynthesis of plant metabolites is affected by temperature, metabolite profiles from in vitro regenerated plants raised under different temperature regimes of 10, 15 °C, 20 °C, 25 °C and 30 °C were obtained using electrospray ionization mass spectrometry (ESI-MS), and principal component analysis (PCA) was carried out to identify key metabolites. Several bin masses were detected by PCA loading scatter plots which separated the samples. In-house bin program selectively manifested the putative known metabolites depending on % total ions count and intensity of selected bins in the plant samples. Total phenolic and flavonoid content were harvested to highest levels (12.9 mg GAE/g DW and 9.3 mg QE/g DW), respectively, at 15 °C. Besides, pinoresinol (lignan), some of the vital amino acids such as serine, methionine, histidine and glutamine were found to be at higher amount in plants raised at 15 °C. Significant phenylpropanoids like cinnamic acid, caffeic acid and quercitol were detected at a higher concentration in plants raised at 15 °C as compared to other treatments. However, phosphoenolpyruvate, and oxalosuccinate (intermediates of the pentose phosphate pathway) were accumulated the most in plants raised at 30 °C and they were detected with lowest values at 10 °C. Glucose and deoxy-xylose 5 phosphate (intermediates of TCA cycle) were found in higher amounts at temperature treatments of 15 and 25 °C, respectively. We conclude that a low-temperature treatment (15 °C) results in a stress-induced accumulation of a variety of pharmacologically important secondary metabolites.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    14
    Citations
    NaN
    KQI
    []