AlGaAs/GaAs Photovoltaic Cells with InGaAs Quantum Dots

2010 
We studied the different carrier kinetic mechanisms involved into the interband absorption of quantum dots (QDs) by photocurrent spectroscopy. It was shown that in vertically coupled InGaAs QDs an effective carrier emission, collection and separation take place due to minizone formation. The possibility for the incorporation of vertically-coupled QDs into solar cells (SC) without any deterioration of structural quality of the p-i-n-junction has been shown. Due to the additional absorption of solar spectrum in QD media and the subsequent effective separation of photogenerated carriers, an increase (~1%) in short-circuit current density (Jsc) for the QD SC-devices has been demonstrated. However the insertion of QDs into intrinsic region reduced the open circuit voltage (Voc) of such devices. Moving the QD array in the base layer as well as including the Bragg reflector (BR) centered on 920 nm resulted in increase of the Voc. Moreover an improved absorption in the QD media for SC with BR led to further increase of Jsc (~1%). The efficiency for QD SCs at the level of 25% (30 suns AM1.5D) has been demonstrated.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    18
    Citations
    NaN
    KQI
    []