Glutamate affects cholesterol homeostasis within the brain via the up-regulation of CYP46A1 and ApoE

2020 
Abstract Chronic glutamate excitotoxicity has been thought to be involved in numerous neurodegenerative disorders. A small but significant loss of membrane cholesterol has been reported following a short stimulation of ionotropic glutamate receptors (iGluRs). We investigated the alteration of brain cholesterol following chronic glutamate treatment. The alteration of cholesterol levels was evaluated in the hippocampus from the adult rats that received the subcutaneous injection with monosodium L-glutamate at 1, 3, 5, and 7 days of age. The regulation of CYP46A1, LXRα, and ApoE levels were assayed following subtoxic glutamate treatment in SH-SY5Y cells as well as HT-22 cells lacking iGluRs. The ratio of 24S-hydroxycholesterol to cholesterol was elevated in the adult rats exposed to monosodium L-glutamate before the weaning age, compared to the control. The blockers of NMDA receptor (MK801) and mGluR5 (MPEP) attenuated the glutamate-induced loss of cholesterol and elevation of 24S-hydroxycholesterol level inSH-SY5Y cells. The induction of the mRNA levels of CYP46A1, LXRα, and ApoE by glutamate was observed in both SH-SY5Y cells and HT-22 cells; additionally, MK801 and MPEP attenuated the increases in these genes in SH-SY5Y cells. The increase in the binding of LXRαproteins with ApoE promoter following glutamate treatment was attenuated by MK801. The luciferase assay indicated the binding of CREB protein with CYP46A1 promoter, and the glutamate-induced CREB expression was inhibited by MK801.The results suggest that glutamate, the major excitatory neurotransmitter, may affect the metabolism and redistribution of cholesterol in the neuronal cells via its specific receptors during chronic exposure.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    1
    Citations
    NaN
    KQI
    []