Single molecule magnetic behavior and photo-enhanced proton conductivity in a series of photochromic complexes

2021 
Abstract Molecules with multifunctional properties are of immense interest in hybrid materials, while challenges still existed because of the limited compatibility of multiple functionalities in a single system. In this work, a series of metal-organic complexes were synthesized and characterized under the assembly of electron donor phosphonate, electron acceptor polypyridine ligand and spin carrier rare earth ions. All the compounds exhibited remarkable and reversible responses with photochromism and photomodulated fluorescence, originated from photogenerated radicals via electron transfer from phosphonates to polypyridine ligands. For the Dy analog, slow magnetic relaxation was observed at cryogenic temperature, indicating the single-molecule magnetic behavior. Furthermore, photogenerated radicals could enhance the proton conductive behavior, with about 2 times larger in magnitude after light irradiation for Dy and Y compounds. The introduction of photoluminescence, magnetism and proton conduction into metallic phosphonates can provide potential applications for photochromic materials.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    1
    Citations
    NaN
    KQI
    []