Chemically engineered graphene oxide as high performance cathode materials for Li-ion batteries
2014
The development of environment-friendly electrode materials is highly desired for the clean and sustainable Li-ion batteries (LIBs) system. Organic cathode materials that involve conducting polymers, organic carbonyl/sulfur compounds are expected to be promising candidates for future LIBs with a concept of “green and sustainable”. However, their battery performances are relatively worse than that of inorganic counterparts due to their low electronic conductivity and unwanted dissolution reactions occurring in electrolytes. Aimed to alter their performances, we herein focuses on the preparation of upgraded organic materials by chemical engineering of graphene oxide (GO) and the systematic study of their electrochemical performance as positive electrodes for LIBs. The obtained decarboxylated GO and carbonylated/hydroxylated GO electrodes show significantly enhanced electrochemical performance compared with that of the GO electrode. Our results demonstrate that the manipulation of oxygen functional groups on GO is an effective strategy to greatly improve the Li storage property of GO-based materials for advanced LIBs cathodes.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
32
References
64
Citations
NaN
KQI