Persulfate adsorption and activation by carbon structure defects provided new insights into ofloxacin degradation by biochar.

2021 
Abstract Cellulose and lignin derived biochars with significant differences in persistent free radicals (PFRs), oxygen-containing functional groups, and defective structure were prepared to explore the mechanism of biochar mediated persulfate (PS) activation. EPR spin trapping and quenching technique coupled with degradation experiments confirmed that the defective structures could activate PS to generate superoxide anions (O2•−), which was converted to singlet oxygen (1O2), especially in the acidic condition. 1O2 dominated the degradation of ofloxacin (OFL, a fluoroquinolone antibiotic). An improved iodometric measurement was applied for direct quantification of adsorbed PS on biochar. The amounts of adsorbed PS were consistent with the degradation of OFL and the measured electric current during the reaction indicated that PS adsorption was a prerequisite for PS activation, which may be neglected in previous studies. The results of this study highlighted the key roles of defective structure and adsorption of PS on biochar for the activation of PS.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    0
    Citations
    NaN
    KQI
    []