Higher-twist corrections to \begin{document}$D\to\pi,K$\end{document} form factors from light-cone sum rules

2021 
We calculate the \begin{document}$D\to P$\end{document} transition form factors within the framework of the light-cone QCD sum rules (LCSR) with the D-meson light-cone distribution amplitudes (LCDAs). The next-to-leading power (NLP) corrections to the vacuum-to-D-meson correlation function are considered, and the NLP corrections from the high-twist D-meson LCDAs and the SU(3) breaking effect from strange quark mass are investigated. Adopting the exponential model of the D-meson LCDAs, the predicted SU(3) flavor symmetry breaking effects are \begin{document}$R_{SU(3)}.{+,0}=1.12$\end{document} and \begin{document}$R_{SU(3)}.{T}=1.39$\end{document} , respectively, which confirms the results from LCSR with pion LCDA. The numerical predictions of the form factors show that the contribution from two-particle higher-twist contributions is of great importance and the uncertainties are dominated by the inverse moment of \begin{document}$\phi_D.+(\omega, \mu)$\end{document} . With the obtained form factors, the predicted Cabibbo-Kobayashi-Maskawa (CKM) matrix elements are \begin{document}$|V_{cd}|=0.151\,{}.{+0.091}_{-0.043} \big |_{\rm th.}\,{}.{+0.017}_{-0.02} \big |_{\rm exp.}$\end{document} and \begin{document}$|V_{cs}|=0.89\,{}.{+0.467}_{-0.234} \big |_{\rm th.}\,{}.{+0.008}_{-0.008} \big |_{\rm exp.}$\end{document} .
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []