Mineralogical, chemical and stable C and O isotope characteristics of surficial carbonate structures from the Mediterranean offshore Israel indicate microbial and thermogenic methane origin

2021 
The Eastern Mediterranean continental slope offshore Israel became a focus of exploration for, and production of, natural gas in recent years. The 2010–2011 Nautilus ROV expedition performed detailed video recordings and sampling in two areas offshore Israel: the Palmachim disturbance, southwest of Tel Aviv, and an area offshore Acre, north of Haifa. An analytical programme regarding the carbonate structures was carried out, examining the overall mineralogy, stable C and O isotopes, and Ca, Mg, and Mn concentrations. This provided information on their composition and as a result, an indication of the carbon sources and temperature of formation. The major authigenic minerals identified comprised magnesian calcite, dolomite, aragonite, and kutnohorite. The detrital minerals included quartz, clays, feldspars, and rare augite and enstatite, likely transported from the Nile estuary. The carbon isotope composition of aliquots taken from nineteen samples from these areas have an overall δ13C range from −62.0 to −0.1‰PDB, indicating a range of microbial/biogenic and thermogenic methane contributions. The range of δ18O from 2.7 to 7.0‰PDB reflects the range of temperatures of formation. The δ18O characteristics differ among areas. In general, high values; δ18O >5‰PDB are recorded from area N2 of the Palmachim disturbance, indicating low temperature of formation. Low values of δ18O ( 0.1 have δ13C between −35 and −22‰PDB suggesting a thermogenic origin. These results suggest that the mineralogical, isotopic δ13, δ18O, and chemical (Mn/Ca indicative of kutnohorite) characteristics of surficial carbonate structures can indicate and distinguish between deep and shallow methane sources in the Eastern Mediterranean.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    0
    Citations
    NaN
    KQI
    []