Meta-MultiSKAT: Multiple phenotype meta-analysis for region-based association test

2019 
The power of genetic association analyses can be increased by jointly meta-analyzing multiple correlated phenotypes. Here, we develop a meta-analysis framework, Meta-MultiSKAT, that uses summary statistics to test for association between multiple continuous phenotypes and variants in a region of interest. Our approach models the heterogeneity of effects between studies through a kernel matrix and performs a variance component test for association. Using a genotype kernel, our approach can test for rare-variants and the combined effects of both common and rare-variants. To achieve robust power, within Meta-MultiSKAT, we developed fast and accurate omnibus tests combining different models of genetic effects, functional genomic annotations, multiple correlated phenotypes and heterogeneity across studies. Additionally, Meta-MultiSKAT accommodates situations where studies do not share exactly the same set of phenotypes or have differing correlation patterns among the phenotypes. Simulation studies confirm that Meta-MultiSKAT can maintain type-I error rate at exome-wide level of 2.5x10 -6 . Further simulations under different models of association show that Meta-MultiSKAT can improve power of detection from 23% to 38% on average over single phenotype-based meta-analysis approaches. We demonstrate the utility and improved power of Meta-MultiSKAT in the meta-analyses of four white blood cell subtype traits from the Michigan Genomics Initiative (MGI) and SardiNIA studies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    0
    Citations
    NaN
    KQI
    []