Alternative polyadenylation is a determinant of oncogenic Ras function

2020 
Alternative polyadenylation of pre-mRNA has been recently shown to play important roles in development and cancer. Activating mutations in the Ras oncogene are common drivers of many human cancers but the mechanisms by which they cooperate with alternative polyadenylation are not known. By exploiting the genetics of C. elegans, we identified cfim-1/CFIm25, a subunit of the alternative polyadenylation machine, as a key determinant of hyperactive Ras function. Ablation of cfim-1 increased penetrance of multivulva phenotype in let-60/Ras gain-of-function (gf) mutant through shortening of transcripts at the 3′ untranslated region, including p21 activated kinase pak-1/PAK1 and multidrug transporter mrp-5/ABCC1. Depletion of CFIm25 in human KRAS-driven cancer cells resulted in a similar shortening of 3′ untranslated regions in the PAK1 and ABCC1 transcripts, which caused an epithelial-to mesenchymal transition and increased cell migration. Exploiting the mechanisms by which alternative polyadenylation affects activated oncogene output could offer novel approaches for the treatment of Ras-driven tumors.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    101
    References
    1
    Citations
    NaN
    KQI
    []