Experimental and Theoretical Study of Thermodynamic Effects in a Quantum Annealer

2019 
Quantum devices are affected by intrinsic and environmental noises. An in-depth characterization of noise effects is essential for exploiting noisy quantum computing. To this end, we studied the energy dissipative behavior of a quantum annealer via experiments and numerical simulations. Our investigation adopts a recently proposed technique that interpolates between pure quantum dynamics and pure thermodynamics. Experiments were conducted on a quantum annealer with an anneal pause function, which inserts a thermal relaxation period into the annealing schedule by pausing the transverse field, which is a source of quantum fluctuation. After investigating the special Hamiltonian that characterizes the quantum thermodynamics of the system, we then observed enhancement of thermodynamic signature depending on the anneal pause parameter. The time development of the state vector, observed in the open quantum simulation, provides rich information for investigating phenomena beyond energy-gap analysis. We identifie...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    10
    Citations
    NaN
    KQI
    []