Modeling impact of FORMOSAT-7/COSMIC-2 mission on ionospheric space weather monitoring

2013 
[1] For the past decade, the paucity of ionospheric observations has made it almost impossible to reconstruct the three-dimensional structures of global ionospheric electron density. The Formosa Satellite-3/Constellation Observing System for Meteorology, Ionosphere and Climate (FORMOSAT-3/COSMIC, F3/C) constellation has provided ionospheric electron density profiles with high vertical resolution through radio occultation measurements. Slated for deployment starting in 2016, the FORMOSAT-7/COSMIC-2 (F7/C2) constellation will further provide more than 4 times the number of the F3/C occultation soundings. An observing system simulation experiment is conducted to determine the impact of F7/C2 on ionospheric weather monitoring. The results first show that the F7/C2 observations can reconstruct 3-D ionospheric structure with a data accumulation period of 1 h, which can advance studies of small spatial/temporal scale variation/signatures in the ionosphere. Comparing to assimilation results of F3/C, the assimilation system significantly reduces the error arising in the models and observations after assimilating synthetic observations of F7/C2. During this observing system simulation experiment period, the averaged root-mean-square error percentage for the results of F7/C2 is about 4.4%, lower than that of F3/C 7.3%. Furthermore, even with an assimilation window of less than 60 min, the F7/C2 RMS errors still yield reliable values compared to the F3/C results. This paper represents a major advance in ionospheric weather monitoring for the future mission.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    21
    Citations
    NaN
    KQI
    []