language-icon Old Web
English
Sign In

Benthis. Final Report

2017 
BENTHIS developed the scientific basis to quantify the impact of bottom trawling on the seafloor and the benthic ecosystem. Based on insight in how fishing gear affects the seafloor, an assessment framework was developed that provide indicators of impact and seafloor status on a continuous scale that can be applied in the context of the MSFD. The mechanistic approach allows us to set reference values of impact (status) to estimate the proportion of a region or habitat where the impact is below (status is above) the threshold. The methodology combines estimates of trawling intensity with the depth to which the fishing gear penetrates into the sea bed (penetration profile) and the sensitivity of the habitat. Habitat sensitivity is estimated from the longevity composition of the benthic community that is related to the recovery rate. The mortality imposed by trawling was shown to be related to penetration depth of the fishing gear. The framework was applied to explore which fisheries had the greatest impact and which habitats were impacted the most. Fishers concentrate their activities in only a part of their total fishing area. These core fishing grounds are characterised by a relative low status (high impact). Additional fishing in these core grounds have only a small impact. In the peripheral areas where fishing intensity is low, additional fishing will have a much larger impact. Hence, shifting trawling activities from the core fishing grounds to the peripheral areas will increase the overall impact. Shifting activities from the peripheral grounds to the core will reduce the overall impact. This asymmetry provides the possibility to reduce the impact at a minimal cost. It was shown that implementing a habitat credit management system can provide incentives to reduce fishing in peripheral areas at minimal cost. In collaboration with the fishing industry and gear manufacturers, technological innovations were studied to reduce the impact of trawling...
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []