Implementation of the SMART protocol for global qubit control in silicon

2021 
Quantum computing based on spins in the solid state allows for densely-packed arrays of quantum bits. While high-fidelity operation of single qubits has been demonstrated with individual control pulses, the operation of large-scale quantum processors requires a shift in paradigm towards global control solutions. Here we report the experimental implementation of a new type of qubit protocol - the SMART (Sinusoidally Modulated, Always Rotating and Tailored) protocol. As with a dressed qubit, we resonantly drive a two-level system with a continuous microwave field, but here we add a tailored modulation to the dressing field to achieve increased robustness to detuning noise and microwave amplitude fluctuations. We implement this new protocol to control a single spin confined in a SiMOS quantum dot and confirm the optimal modulation conditions predicted from theory. Universal control of a single qubit is demonstrated using modulated Stark shift control via the local gate electrodes. We measure an extended coherence time of $2$ ms and an average Clifford gate fidelity $>99$ % despite the relatively long qubit gate times ($>10$ $\unicode[serif]{x03BC}$s), constituting a significant improvement over a conventional spin qubit and a dressed qubit. This work shows that future scalable spin qubit arrays could be operated using global microwave control and local gate addressability, while maintaining robustness to relevant experimental inhomogeneities.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    1
    Citations
    NaN
    KQI
    []