Markovian evolution of quantum coherence under symmetric dynamics

2017 
Both conservation laws and practical restrictions impose symmetry constraints on the dynamics of open quantum systems. In the case of time-translation symmetry, which arises naturally in many physically relevant scenarios, the quantum coherence between energy eigenstates becomes a valuable resource for quantum information processing. In this work we identify the minimum amount of decoherence compatible with this symmetry for a given population dynamics. This yields a generalisation to higher-dimensional systems of the relation T2 2T1 for qubit decoherence and relaxation times. It also enables us to witness and assess the role of non-Markovianity as a resource for coherence preservation and transfer. Moreover, we discuss the relationship between ergodicity and the ability of Markovian dynamics to indenitely sustain a superposition of diferent energy states. Finally, we establish a formal connection between the resource-theoretic and the master equation approaches to thermodynamics, with the former being a non-Markovian generalisation of the latter. Our work thus brings the abstract study of quantum coherence as a resource towards the realm of actual physical applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    37
    Citations
    NaN
    KQI
    []