FROM DUSTY FILAMENTS TO MASSIVE STARS: THE CASE OF NGC 7538 S

2012 
We report on high-sensitivity and high angular resolution archival Submillimeter Array observations of the large ({approx}15,000 AU) putative circumstellar disk associated with the O-type protostar NGC 7538 S. Observations of the continuum resolve this putative circumstellar disk into five compact sources, with sizes {approx}3000 AU and masses {approx}10 M{sub Sun }. This confirms the results of recent millimeter observations made with CARMA/BIMA toward this object. However, we find that most of these compact sources eject collimated bipolar outflows, revealed by our silicon monoxide (SiO J = 5-4) observations, and confirm that these sources have a (proto)stellar nature. All outflows are perpendicular to the large and rotating dusty structure. We propose therefore that, rather than being a single massive circumstellar disk, NGC 7538 S could instead be a large and massive contracting or rotating filament that is fragmenting at scales of 0.1-0.01 pc to form several B-type stars, via the standard process involving outflows and disks. As in recent high spatial resolution studies of dusty filaments, our observations also suggest that thermal pressure does not seem to be sufficient to support the filament, so that either additional support needs to be invoked or else the filament must be in the processmore » of collapsing. A smoothed particle hydrodynamics numerical simulation of the formation of a molecular cloud by converging warm neutral medium flows produces contracting filaments whose dimensions and spacings between the stars forming within them, as well as their column densities, strongly resemble those observed in the filament reported here.« less
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    21
    Citations
    NaN
    KQI
    []