Validation of a dose-point kernel convolution technique for internal dosimetry

1995 
The objective of this study was to validate a dose-point kernel convolution technique that provides a three-dimensional (3D) distribution of absorbed dose from a 3D distribution of the radionuclide 131I. A dose-point kernel for the penetrating radiations was calculated by a Monte Carlo simulation and cast in a 3D rectangular matrix. This matrix was convolved with the 3D activity map furnished by quantitative single-photon-emission computed tomography (SPECT) to provide a 3D distribution of absorbed dose. The convolution calculation was performed using a 3D fast Fourier transform (FFT) technique, which takes less than 40 s for a 128*128*16 matrix on an Intel 486 DX2 (66 MHz) personal computer. The calculated photon absorbed dose was compared with values measured by thermoluminescent dosimeters (TLDS) inserted along the diameter of a 22 cm diameter annular source of 131I. The mean and standard deviation of the percentage difference between the measurements and the calculations were equal to -1% and 3.6%, respectively. This convolution method was also used to calculate the 3D dose distribution in an Alderson abdominal phantom containing a liver, a spleen, and a spherical tumour volume loaded with various concentrations of 131I. By averaging the dose calculated throughout the liver, spleen, and tumour the dose-point kernel approach was compared with values derived using the MIRD formalism, and found to agree to better than 15%.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    59
    Citations
    NaN
    KQI
    []