Modelling spin waves in noncollinear antiferromagnets: spin-flop states, spin spirals, skyrmions and antiskyrmions
2020
Spin waves in antiferromagnetic materials have great potential for next-generation magnonic technologies. However, their properties and their dependence on the type of ground-state antiferromagnetic structure are still open questions. Here, we investigate theoretically spin waves in one- and two-dimensional model systems with a focus on noncollinear antiferromagnetic textures such as spin spirals and skyrmions of opposite topological charges. We address in particular the nonreciprocal spin excitations recently measured in bulk antiferromagnet $\alpha$--$\text{Cu}_2\text{V}_2\text{O}_7$ utilizing inelastic neutron scattering experiments [Phys.\ Rev.\ Lett.\ \textbf{119}, 047201 (2017)], where we help to characterize the nature of the detected spin-wave modes. Furthermore, we discuss how the Dzyaloshinskii-Moriya interaction can lift the degeneracy of the spin-wave modes in antiferromagnets, resembling the electronic Rashba splitting. We consider the spin-wave excitations in antiferromagnetic spin-spiral and skyrmion systems and discuss the features of their inelastic scattering spectra. We demonstrate that antiskyrmions can be obtained with an isotropic Dzyaloshinskii-Moriya interaction in certain antiferromagnets.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
56
References
10
Citations
NaN
KQI