Low-Energy and Long-Lived Emission from Polypyridyl Ruthenium(II) Complexes Having A Stable-Radical Substituent
2017
Novel polypyridyl ruthenium(II) complexes having a 2,2′-bipyridine (bpy) derivative which possesses a 1,5-dimethyl-6-oxoverdazyl radical (OV) group as a stable-radical substituent were designed and synthesized. The radical–ruthenium(II) complexes showed low-energy/intense MLCT absorption and low-energy/long-lived MLCT emission, and these characteristics of the complexes were explained by the electron-withdrawing nature of the OV group. Furthermore, the radical-substituent effects were enhanced by the presence of the electron-donating methyl groups at the 4- and 4′-positions of bpy in the ancillary ligands. The detailed electrochemical, spectroscopic, and photophysical properties of the complexes were discussed in terms of the systematic modification of the second coordination sphere in the main and ancillary ligands.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
92
References
10
Citations
NaN
KQI