Host protection to intestinal worm infections: the importance of activated and armed innate effector cells at the host parasite interface.

2020 
Intestinal roundworms cause chronic debilitating disease in animals, including humans. A lack of effective vaccines and the emergence of widespread drug resistance only increase the need to better understand parasite clearance mechanisms within the host. Heligmosomoides polygyrus larvae induce a strong intestinal granuloma response within their murine host, which has been associated with resistance. Immune cells, mostly alternatively activated macrophages and eosinophils, accumulate around the tissue encysted parasites to immobilize and damage/kill developing worms. In a one dose (bolus) experimental infection, infected C57Bl/6 mice are unable to clear parasites which results in chronic infection with high worm burdens. However, using a frequent dose trickle model of infection, we, like others, have found that C57Bl/6 mice can clear infection. We found that the clearance is associated with higher granuloma numbers, but no changes in systemic/intestinal Th2 responses. Within the granulomas, we found that myeloid cells had a different transcriptional profile in each of the infected groups, and that high IgG1, but not IgG2c, IgA or IgE, levels were observed around the larvae of only trickle-infected mice. Our results highlight the importance of the granuloma in the host’s ability to clear H. polygyrus and emphasise the need to study this key tissue in more depth, rather than using correlates such as general intestinal or systemic responses.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    79
    References
    0
    Citations
    NaN
    KQI
    []