Compressed sensing and deep learning reconstruction for women's pelvic MRI denoising: Utility for improving image quality and examination time in routine clinical practice.

2021 
Abstract Purpose To demonstrate the utility of compressed sensing with parallel imaging (Compressed SPEEDER) and AiCE compared with that of conventional parallel imaging (SPEEDER) for shortening examination time and improving image quality of women’s pelvic MRI. Method Thirty consecutive patients with women’s pelvic diseases (mean age 50 years) underwent T2-weighted imaging using Compressed SPEEDER as well as conventional SPEEDER reconstructed with and without AiCE. The examination times were recorded, and signal-to-noise ratio (SNR) was calculated for every patient. Moreover, overall image quality was assessed using a 5-point scoring system, and final scores for all patients were determined by consensus of two readers. Mean examination time, SNR and overall image quality were compared among the four data sets by Wilcoxon signed–rank test. Results Examination times for Compressed SPEEDER with and without AiCE were significantly shorter than those for conventional SPEEDER with and without AiCE (with AiCE: p  Conclusion Image quality and shorten examination time for T2-weighted imaging in women’s pelvic MRI can be significantly improved by using Compressed SPEEDER with AiCE in comparison with conventional SPEEDER, although other sequences were not tested.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    6
    Citations
    NaN
    KQI
    []