Chaotic Motion in a Harmonically Excited Soliton System

2006 
The influence of a soliton system under an external harmonic excitation is considered. We take the compound KdV-Burgers equation as an example, and investigate numerically the chaotic behavior of the system with a periodic forcing. Different routes to chaos such as period doubling, quasi-periodic routes, and the shapes of strange attractors are observed by using bifurcation diagrams, the largest Lyapunov exponents, phase projections and Poincare maps.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    3
    Citations
    NaN
    KQI
    []