Potassium homeostasis in the nervous system of cephalopods and crustacea

1987 
1. Previous work has shown that nerve activity is associated with a significant release of potassium in the vicinity of the axonal membrane. Several mechanisms are normally present which reduce K+ accumulation in the extra-axonal space. 2. In intact connectives of the crayfish, Procambarus clarkii, repetitive stimulation of the giant axons was associated with an apparent hyperpolarization measured by an interstitial microelectrode, which most probably corresponds to depolarization of the inner face of the perineurial cells by K+ ions leaving the axons. 3. In desheathed connectives of the crayfish, potassium accumulated during long depolarizing voltage-clamp pulses but cleared away very quickly at the end of the pulse. 4. In the small squid, Alloteuthis subulata, repetitive stimulation of giant axons in situ in fresh and well-perfused animals did not result in a large decrease in the positive after potential (undershoot), reflecting the absence of potassium accumulation. A similar absence of accumulation was observed in vitro for carefully and freshly dissected isolated axons from live squids. 5. In both cases, deterioration of the physiological state of the axon was accompanied by a significant potassium accumulation. Potassium accumulation could also be reversibly enhanced by decreasing the osmotic pressure of the bathing medium, whereas hyperosmotic solutions had the opposite effect. These results are compatible with the idea that Schwann cells around the axon play a key role in K+ homeostasis. 6. Experiments on giant axons of the large squid species, Loligo forbesi confirmed the observations made on Alloteuthis in that fresh preparations exhibited little potassium accumulation. Under voltage-clamp conditions, 10 ms depolarizing pulses to various potential levels did not induce any accumulation in these preparations as reflected by the outward tail current. Large accumulation was observed in older axons under similar experimental conditions. 7. A large peri-axonal space associated with healthy glial cells appears to be a prerequisite for efficient K+ homeostasis in both crayfish and squid. Other mechanisms involving specific transport mechanisms across axonal and glial membranes are also likely to be involved.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    9
    Citations
    NaN
    KQI
    []