Enzyme-Instructed Assembly and Disassembly Processes for Targeting Downregulation in Cancer Cells

2017 
Cancer cells differ from normal cells in both gain of functions (i.e., upregulation) and loss of functions (i.e., downregulation). While it is common to suppress gain of function for chemotherapy, it remains challenging to target downregulation in cancer cells. Here we show the combination of enzyme-instructed assembly and disassembly to target downregulation in cancer cells by designing peptidic precursors as the substrates of both carboxylesterases (CESs) and alkaline phosphatases (ALPs). The precursors turn into self-assembling molecules to form nanofibrils upon dephosphorylation by ALP, but CES-catalyzed cleavage of the ester bond on the molecules results in disassembly of the nanofibrils. The precursors selectively inhibit the cancer cells that downregulate CES (e.g., OVSAHO) but are innocuous to a hepatocyte that overexpresses CES (HepG2), while the two cell lines exhibit comparable ALP activities. This work illustrates a potential approach for the development of chemotherapy via targeting downregul...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    83
    Citations
    NaN
    KQI
    []