Microstructure and Properties of Nanocrystalline Copper Strengthened by a Low Amount of Al2O3 Nanoparticles

2017 
Dispersion-strengthened Cu-Al2O3 materials have been studied over recent years to find an optimum processing route to obtain a high strength, thermal-stable copper alloy designed for modern applications in electrical engineering. The study analyses the influence of 1 vol.% of alumina content on strengthening the copper matrix. Microstructure of the Cu-Al2O3 composite was studied by x-ray diffraction as well as scanning and transmission electron microscopy. The composite shows a homogeneous, thermal-stable nanostructure up to 900 °C due to dispersed alumina nanoparticles. The particles effectively strengthen crystallite/grain boundaries in processes of powder consolidation and annealing of the compact. In contrast to monolithic Cu, the Cu-1 vol.% Al2O3 exhibits more than double strength and hardness. The nanocrystalline matrix and the low amount of alumina particles result in a yield strength of 288 MPa and a ductility of 15% which is a good combination for practical utilization of the material.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    4
    Citations
    NaN
    KQI
    []