On the perturbation series for eigenvalues and eigenprojections

2019 
A standard perturbation result states that perturbed eigenvalues and eigenprojections admit a perturbation series provided that the operator norm of the perturbation is smaller than a constant times the corresponding eigenvalue isolation distance. In this paper, we show that the same holds true under a weighted condition, where the perturbation is symmetrically normalized by the square-root of the reduced resolvent. This weighted condition originates in random perturbations where it leads to significant improvements.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    5
    Citations
    NaN
    KQI
    []