Three-dimensional geotechnical modeling of the soils in Riyadh city, KSA

2019 
A standard penetration test (SPT) was carried out for 700 samples from 143 boreholes in four districts in Riyadh city, Kingdom of Saudi Arabia (KSA). Rock quality designation (RQD) and unconfined compression strength (UCS) tests were also performed for 238 samples from 154 boreholes in 15 districts of the city. Three-dimensional (3D) models of the SPT, RQD, and UCS were produced using the Voxler 3 software package. Further, 333 soil samples collected from 106 boreholes in 11 districts were examined to spatially model the distinctive geotechnical patterns of the alluvial soils in two dimensions. Tests were carried out to determine the soil grain size distribution, natural water content (NWC%), Atterberg’s consistency limits [liquid limit (LL%), plastic limit (PL%), and plasticity index (PI%)], and soil–water chemical components (pH Cl−, SO32−, and CO3−). Spatial maps of the geotechnical parameters were produced by applying the geostatistical ordinary kriging implemented in ArcGIS. Soil samples were classified according to the unified soil classification system (USCS), and a thickness of the silty clay layer was produced. Plasticity charts indicated that the soils are inorganic cohesive clays with low and moderate plasticity (CL). Soil strength parameters showed wide ranges of UCS (average 220, range 21.3–618 kg/cm2), SPT (average 39, 0–100 N), and RQD (average 44, 11–78%). UCS and SPT 3D models clarified a regional southeastward trend of increase. RQD 3D models showed poor to fair engineering quality of rocks (25–75%). The results presented here can help to establish geohazard zonation maps with construction favorability ratings for safe urban expansion.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    9
    Citations
    NaN
    KQI
    []