Drug Interaction Potential of Trastuzumab Emtansine (T-DM1) Combined with Pertuzumab in Patients With HER2-Positive Metastatic Breast Cancer

2012 
Trastuzumab emtansine (T-DM1) is an antibody-drug conjugate comprised of trastuzumab and the cytotoxic agent DM1 (derivative of maytansine) linked by a stable linker N-succinimidyl 4-(N-maleimidomethyl) cyclohexane-1-carboxylate (SMCC). T-DM1 targets an epitope located at subdomain IV of human epidermal growth factor receptor 2 (HER2). Pertuzumab is a monoclonal antibody that targets an epitope located at subdomain II of HER2, distinct from the epitope recognized by T-DM1. The pharmacokinetics (PK), safety, and efficacy of T-DM1 combined with pertuzumab were studied in a phase 1b/2 trial in 67 patients with HER2-positive, locally advanced or metastatic breast cancer (MBC). The therapeutic protein-drug interaction (TP-DI) potential of T-DM1 plus pertuzumab was evaluated. The PK of T-DM1–related analytes and pertuzumab were compared with historical PK data. The results show that the exposure of T-DM1 and DM1, as estimated by noncompartmental analyses, was comparable with that reported by historical single-agent studies in patients with HER2-positive MBC. T-DM1 clearance and volume of distribution in the central compartment, as estimated by population PK analysis, were also comparable between this study and historical single-agent studies in patients with HER2-positive MBC. Summary statistics of pertuzumab trough and maximal exposure (concentrations at predose and 15–30 minutes after the end of infusion at cycle 1 and at steady state) were similar with those observed in a representative historical single-agent study with the same dosing regimen. The visual predictive check plot by population simulation further confirmed that T-DM1 did not alter pertuzumab PK. Based on these data and the PK and pharmacodynamic properties of T-DM1 and pertuzumab, the risk of TP-DI appears to be low when T-DM1 and pertuzumab are given together.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    38
    Citations
    NaN
    KQI
    []