Investigation of the screen printed contacts of silicon solar cells using Transmission Line Model

2010 
Purpose: The aim of the paper is to analyze how to improve the quality of the screen printed contacts of silicon solar cells. This means forming front side grid in order to decrease contact resistance. Design/methodology/approach: The topography of screen printed contacts were investigated using ZEISS SUPRA 25 scanning electron microscope (SEM) with an energy dispersive X-ray (EDS) spectrometer for microchemical analysis. Front collection grid was created using two types of Ag pastes.The Transmission Line Model (TLM) patterns were fabricated by screen printing method on p – type Czochralski silicon Cz-Si wafer with n+ emitter without texture and with a titanium oxide (TiOx) layer as an antireflection coating (ARC). Electrical properties of contacts were investigated using TLM. Findings: This work presents a conventional analysis of a screen printing process for contact formation in the crystalline silicon solar cells. The seed layer was created using silver pasts by the screen printed metallization. These contact structures were investigated using SEM to gain a better understanding of the obtained electrical parameters. Research limitations/implications: The contact resistance of the screen-printed metallization depends not only on the kind of applied paste and firing conditions, but is also strongly influenced by the surface morphology of the silicon substrate. Practical implications: Contact formation is an important production step to be optimized in the development of high efficiency solar cells. Originality/value: The effect of co-firing different pasts (especially a past, which was prepared using silver nano-powder) on electrical properties of silicon wafers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    13
    Citations
    NaN
    KQI
    []