Excited states of the water molecule : Analysis of the valence and Rydberg character

2008 
The excited states of the water molecule have been analyzed by using the extended quantum-chemical multistate CASPT2 method, namely, MS-CASPT2, in conjunction with large one-electron basis sets of atomic natural orbital type. The study includes 13 singlet and triplet excited states, both valence and 3s-, 3p-, and 3d-members of the Rydberg series converging to the lowest ionization potential and the 3s- and 3p-Rydberg members converging to the second low-lying state of the cation, 1A12. The research has been focused on the analysis of the valence or Rydberg character of the low-lying states. The computation of the 1B11 state of water at different geometries indicates that it has a predominant 3s-Rydberg character at the equilibrium geometry of the molecule but it becomes progressively a valence state described mainly by the one-electron 1b1→4a1 promotion, as expected from a textbook of general chemistry, upon elongation of the O–H bonds. The described valence-Rydberg mixing is established to be originated ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    57
    Citations
    NaN
    KQI
    []