An Analysis of West African Dynamics Using a Linearized GCM

2008 
Abstract This study utilizes a linear, primitive equation spherical model to study the development and propagation of easterly wave disturbances over West Africa. Perturbations are started from an initial disturbance consisting of a barotropic vortex and the governing equations are integrated forward in time. The perturbations are introduced into basic states corresponding to the observed dynamical and thermodynamical characteristics of two wet years in the Sahel and two dry years. The model simulations show consistent contrasts in wave activity between the wet and dry years. The waves are markedly stronger in the wet years and show a barotropic structure throughout the troposphere. The waves tend to extend throughout the troposphere to the level of the tropical easterly jet (TEJ) in the wet years, but not in the dry years. The upper-tropospheric shear, which is stronger in wet years, appears to be a key factor in wave development. This shear is dependent on the intensity of the TEJ, suggesting that the T...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    27
    Citations
    NaN
    KQI
    []