Effects of ionizing radiation and temperature on uranyl silicates: soddyite (UO2)2(SiO4)(H2O)2 and Uranophane Ca(UO2)2(SiO3OH)2·5H2O.

2011 
The stability of soddyite under electron irradiation has been studied over the temperature range of 25―300 °C. At room temperature, soddyite undergoes a crystalline-to-amorphous transformation (amorphization) at a total dose of 6.38 x 10 8 Gy. The electron beam irradiation results suggest that the soddyite structure is susceptible to radiation-induced nanocrystallization of UO 2 . The temperature dependence of amorphization dose increases linearly up to 300 °C. A thermogravimetric and calorimetric analysis (TGA-DSC) combined with X-ray diffraction (XRD) indicates that soddyite retains its water groups up to 400 °C, followed by the collapse of the structure. Based on thermal analysis of uranophane, the removal of some water groups at relatively low temperatures provokes the collapse of the uranophane structure. This structural change appears to be the reason for the increase of amorphization dose at 140 °C. According to the results obtained, radiation field of a nuclear waste repository, rather than temperature effects, may cause changes in the crystallinity of soddyite and affect its stability during long-term storage.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    7
    Citations
    NaN
    KQI
    []