Continuation of long-term global SO 2 pollution monitoring from OMI to OMPS

2016 
Over the past 20 years, advances in satellite remote sensing of pollution-relevant species have made space-borne observations an increasingly important part of atmospheric chemistry research and air quality management. This progress has been facilitated by advanced UV–vis spectrometers, such as the Ozone Monitoring Instrument (OMI) on board the NASA Earth Observing System (EOS) Aura satellite, and continues with new instruments, such as the Ozone Mapping and Profiler Suite (OMPS) on board the NASA–NOAA Suomi National Polar-orbiting Partnership (SNPP) satellite. In this study, we demonstrate that it is possible, using our state-of-the-art principal component analysis (PCA) retrieval technique, to continue the long-term global SO 2 pollution monitoring started by OMI with the current and future OMPS instruments that will fly on the NOAA Joint Polar Satellite System (JPSS) 1, 2, 3, and 4 satellites in addition to SNPP, with a very good consistency of retrievals from these instruments. Since OMI SO 2 data have been primarily used for (1) providing regional context on air pollution and long-range transport on a daily basis and (2) providing information on point emission sources on an annual basis after data averaging, we focused on these two aspects in our OMI–OMPS comparisons. Four years of retrievals (2012–2015) have been compared for three regions: eastern China, Mexico, and South Africa. In general, the comparisons show relatively high correlations ( r  = 0. 79–0.96) of daily regional averaged SO 2 mass between the two instruments and near-unity regression slopes (0.76–0.97). The annual averaged SO 2 loading differences between OMI and OMPS are small ( r  = 0. 92–0.97) in the spatial distribution of annual averaged SO 2 between OMI and OMPS over the three regions during 2012–2015. The emissions from ∼ 400 SO 2 sources calculated with the two instruments also show a very good correlation ( r  = ∼ 0.9) in each year during 2012–2015. OMPS-detected SO 2 point source emissions are slightly lower than those from OMI, but OMI–OMPS differences decrease with increasing strength of source. The OMI–OMPS SO 2 mass differences on a pixel by pixel (daily) basis in each region can show substantial differences. The two instruments have a spatial correlation coefficient of 0.7 or better on 2 retrievals were achieved without any explicit adjustments to OMI or OMPS radiance data and that the retrieval agreement may be further improved by introducing a more comprehensive Jacobian lookup table than is currently used.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    35
    Citations
    NaN
    KQI
    []