Single-Photon Switching and Entanglement of Solid-State Qubits in an Integrated Nanophotonic System

2016 
Efficient interfaces between photons and quantum emitters form the basis for quantum networks and enable nonlinear optical devices operating at the single-photon level. We demonstrate an integrated platform for scalable quantum nanophotonics based on silicon-vacancy (SiV) color centers coupled to nanoscale diamond devices. By placing SiV centers inside diamond photonic crystal cavities, we realize a quantum-optical switch controlled by a single color center. We control the switch using SiV metastable orbital states and verify optical switching at the single-photon level by using photon correlation measurements. We use Raman transitions to realize a single-photon source with a tunable frequency and bandwidth in a diamond waveguide. Finally, we create entanglement between two SiV centers by detecting indistinguishable Raman photons emitted into a single waveguide. Entanglement is verified using a novel superradiant feature observed in photon correlation measurements, paving the way for the realization of quantum networks.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    0
    Citations
    NaN
    KQI
    []