Demonstration gardens with EDTA-washed soil. Part III: Plant growth, soil physical properties and production of safe vegetables.
2021
In previous reports large-scale EDTA-based soil washing using ReSoil® technology was demonstrated. In the current study, we established a vegetable garden with nine raised beds (4 × 1 × 0.5 m), three with original (contaminated) soil, three with remediated soil, and three with remediated soil vitalized by addition of vermicompost, earthworms, and rhizosphere inoculum. The garden was managed in 6 rotations between July 2018 and November 2019. Buckwheat was sown first as a green manure followed by spinach, lamb's lettuce, chicory, garlic, onion, leek, lettuce, carrot, kohlrabi and spinach again. Buckwheat growth on the remediated soil was reduced by half. Throughout the gardening process there were no remarkable differences in bulk density, hydraulic conductivity, available water capacity, and aggregate stability of the original and remediated soil. Biomass yield and plant performance, as measured by NDVI, also remained similar regardless of soil treatment. Remediation reduced Pb concentration in edible parts of vegetables from 76 (garlic) to 95% (kohlrabi), Zn concentration from 14 (lettuce) to 76% (first cutting of chicory), and Cd concentration from 33% (carrot) to 91% (leek and second cutting of chicory). The transfer of metals from soil to root and from root to shoot occurred in the order: Pb < Zn < Cd. The bioconcentration of toxic metals in edible plant parts was generally lower in the remediated soils. Application of ReSoil® technology and growing vegetables that exclude metals, especially Cd, has potential for safe food production on remediated soils. Vitalization had little effect on the properties of the remediated soil.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
65
References
0
Citations
NaN
KQI