Microstructure and Residual Stress of Alumina Scale Formed on Ti2AlC at High Temperature in Air

2007 
Ti2AlC ternary carbide is being explored for various high temperature applications owing to its high strength at high temperatures, excellent thermal-shock resistance, and high electrical conductivity. In this study, isothermal oxidation at 1000 XC, 1200 XC, and 1400 XC for up to 25 hours, as well as 1,000 1-hour cyclic oxidation at 1200 XC were performed in air to examine the oxidation behavior of Ti2AlC. Characteristics of the oxide scale developed in air, including mass change, residual stress in the -Al2O3 scale, phase constituents and microstructure, were examined as functions of time and temperature by thermogravimetry, photostimulated luminescence, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy via focused ion beam in-situ lift-out. A continuous and adherent -Al2O3 scale underneath a discontinuous-transient rutile-TiO2 scale was identified in the oxide scale developed at 1000 XC and 1200 XC. At 1400 XC, Al2TiO5 was identified as the discontinuous-transient scale above the continuous and adherent -Al2O3 scale. The -Al2O3 scale thickened to more than 15 m after 25 hours of isothermal oxidation at 1400 XC, and after 1,000 1-hour cyclic oxidation at 1200 XC, yet remained adherent and protective. The compressive residual stress determined by photoluminescence for the -Al2O3 scale remained under 0.65more » GPa for the specimens oxidized up to 1400 XC for 25 hours. The small magnitude of the compressive residual stress may impart the high spallation-resistance of the protective -Al2O3 scale developed on Ti2AlC.« less
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []