Further Study of Quasiperiodic Vibration Excitation Forces in Rotated Triangular Tube Bundles Subjected to Two-Phase Cross Flow

2009 
Two-phase cross flow exists in many shell-and-tube heat exchangers. Flow-induced vibration excitation forces can cause tube motion that will result in long-term fretting-wear or fatigue. Detailed vibration excitation force measurements in tube bundles subjected to two-phase cross flow are required to understand the underlying vibration excitation mechanisms. Some of this work has already been done. Somewhat unexpected but significant quasiperiodic forces in both the drag and lift directions were measured. These forces are generally larger in the drag direction. However, the excitation force frequency is relatively low (i.e., 3―6 Hz) and not directly dependent on flow velocity in the drag direction. On the other hand, much higher frequencies (up to 16 Hz) were observed in the lift direction at the higher flow velocities. The frequency appears directly related to flow velocity in the lift direction. The present work aims at (1) providing further evidence of the quasiperiodic lift force mechanism, (2) determining the effect of cylinder position on such quasiperiodic drag and lift forces, and (3) verifying the existence of quasiperiodic drag and lift forces in a more realistic larger tube array. The program was carried out with two rotated triangular tube arrays of different width subjected to air/water flow to simulate two-phase mixtures from liquid to 95% void,fraction. Both the dynamic lift and drag forces were measured with strain gauge instrumented cylinders.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    5
    Citations
    NaN
    KQI
    []