De–randomized Meta-Differential Evolution for Calculating and Predicting Glucose Levels

2019 
A physiological model improves delivered healthcare, when constructing a medical device. Such a model comprises a number of parameters. While an analytical method determines model parameters, an evolutionary algorithm can improve them further. As evolutionary algorithms were designed on top of random-number generators, their results are not deterministic. This raises a concern about their applicability to medical devices. Medical-device algorithm must produce an output with a minimum guaranteed accuracy. Therefore, we applied de-randomized sequences to Meta-Differential Evolution instead of using a random-number generator. Eventually, we designed an optimization method based on zooming with derandomized sequences as an alternative to the Meta-Differential Evolution. As the experimental setup, we predicted glucose-level signal to cover a blind window of glucose-monitoring signal that results from a physiological lag in glucose transportation. Completely de-randomized differential evolution exhibited the same accuracy and precision as completely non-deterministic differential evolution. They produced 93% of glucose levels with relative error less than or equal to 15%.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    2
    Citations
    NaN
    KQI
    []