Fourfold power efficiency improvement in organic light-emitting devices using an embedded nanocomposite scattering layer

2012 
Abstract It has been demonstrated that internal extraction structures (IES) can be introduced in OLEDs to decrease the ratio of the waveguide mode and simultaneously increase the ratios of the substrate and radiation modes. In this study, titanium oxide (TiO 2 ) nanoparticles (NPs) combined with transparent photoresist (TPR) were utilized to form an embedded nanocomposite scattering layer between the indium-tin-oxide (ITO) and glass substrate, leading to a significant boost in the out-coupling efficiency of the OLEDs. Inside the nanocomposite scattering layer, NPs of different sizes served distinct functions. The 250 nm-TiO 2 particles were used to induce scattering and diminish the light reflection back to the ITO layer. On the other hand, the refractive index of the TPR can be increased by increasing the concentration of the 25 nm-TiO 2 , which reduced the difference in the refractive index between the ITO and TPR and thus multiplied the amount of light entering into the scattering layer. By employing nanocomposite substrate with mixed dual-sized NPs, we obtained power efficiencies of the blue phosphorescent OLEDs that were about 4.3 times higher than that of the control device at the high luminance of 5 × 10 3  cd/m 2 .
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    46
    Citations
    NaN
    KQI
    []