SELF-HEATING OF CORONA BY ELECTROSTATIC FIELDS DRIVEN BY SHEARED FLOWS

2012 
A mechanism for self-heating of the solar corona is discussed. It is shown that the free energy available in the form of sheared flows gives rise to unstable electrostatic perturbations which accelerate and heat particles. The electrostatic perturbations can occur through two processes, viz., by a purely growing sheared flow-driven instability and/or by a sheared flow-driven drift wave. These processes can occur throughout the corona and, hence, this self-heating mechanism could be very important for coronal heating. These instabilities can give rise to local perturbed electrostatic potentials {psi}{sub 1} of up to 100 volts within 3 Multiplication-Sign 10{sup -2} to a few seconds time, if the (dimensionless) initial perturbation is assumed to be about 1%, that is, e{psi}{sub 1}/T{sub e} {approx_equal} 10{sup -2}. The wavelengths in the direction perpendicular to the external magnetic field B{sub 0} vary from about 10 m to 1 m in our model. The purely growing instability creates electrostatic fields by sheared flows even if there is no density gradient, whereas a density gradient is crucial for the occurrence of the drift wave instability. The purely growing instability develops a small real frequency as well in the two-ion coronal plasma. In the solar corona, very lowmore » frequency (of the order of 1 Hz) drift dissipative waves can also occur due to electron-ion collisions.« less
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    10
    Citations
    NaN
    KQI
    []