Preliminary Imaging of Red Blood Cells in Turbulent Flow

2012 
Considerable uncertainty exists about how momentum and energy are transferred to cells in turbulent flow, which has been shown to cause six times more damage to red blood cells (RBC’s) than laminar flow with the same mean wall shear stress [Kameneva, et al. 2004]. Though it is a purely mathematical construct to yield closure of the time-averaged Navier-Stokes equation for a continuum fluid, which is not valid at the scale of the cell, Reynolds stress has been used as an empirical indicator for damage potential [Sallam & Hwang 1984]. Other scales, including local viscous stress [Jones 1995], flow of plasma around inertia cells [Quinlan & Dooley 2007], shear within eddies [Quinlan & Dooley 2007] and shear between rigid cells within an eddy [Antiga & Steinman 2009], have been forwarded. To provide data to validate these models, an imaging system was assembled to directly observe RBC’s in turbulent flow under a microscope.Copyright © 2012 by ASME
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    2
    Citations
    NaN
    KQI
    []