Long-term depression of excitatory transmission in the lateral septum.

2021 
Neurons in the lateral septum (LS) integrate glutamatergic synaptic inputs, primarily from hippocampus, and send inhibitory projections to brain regions involved in reward and the generation of motivated behavior. Motivated learning and drugs of abuse have been shown to induce long-term changes in the strength of glutamatergic synapses in the LS, but the cellular mechanisms underlying long-term synaptic modification in the LS are poorly understood. Here we examined synaptic transmission and long-term depression (LTD) in brain slices prepared from male and female C57BL/6 mice. No sex differences were observed in whole-cell patch-clamp recordings of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA-R) and N-methyl-D-aspartate receptor (NMDA-R) mediated currents. Low frequency stimulation of the fimbria fibre bundle (1 Hz 15 min) induced LTD of the LS field excitatory postsynaptic potential (fEPSP). Induction of LTD was blocked by the NMDA-R antagonist APV, but not the selective antagonist of GluN2B-containing NMDA-R ifenprodil. These results demonstrate the NMDA-R dependence of LTD in the LS. The LS is a sexually dimorphic structure and sex differences in glutamatergic transmission have been reported in vivo; our results suggest sex differences observed in vivo result from network activity rather than intrinsic differences in glutamatergic transmission.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    0
    Citations
    NaN
    KQI
    []