Microwave Ion Source and Beam Injection for an Accelerator-drivenNeutron Source

2007 
An over-dense microwave driven ion source capable ofproducing deuterium (or hydrogen) beams at 100-200 mA/cm2 and with atomicfraction>90 percent was designed and tested with an electrostaticlow energy beam transport section (LEBT). This ion source wasincorporatedinto the design of an Accelerator Driven Neutron Source(ADNS). The other key components in the ADNS include a 6 MeV RFQaccelerator, a beam bending and scanning system, and a deuterium gastarget. In this design a 40 mA D+ beam is produced from a 6 mm diameteraperture using a 60 kV extraction voltage. The LEBT section consists of 5electrodes arranged to form 2 Einzel lenses that focus the beam into theRFQ entrance. To create the ECR condition, 2 induction coils are used tocreate ~; 875 Gauss on axis inside the source chamber. To prevent HVbreakdown in the LEBT a magnetic field clamp is necessary to minimize thefield in this region. Matching of the microwave power from the waveguideto the plasma is done by an autotuner. We observed significantimprovement of the beam quality after installing a boron nitride linerinside the ion source. The measured emittance data are compared withPBGUNS simulations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []